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Direct numerical simulations of a fully developed turbulent channel flow for two 
relatively small values of the Reynolds number are used to examine its influence on 
various turbulence quantities in the near-wall region. The limiting wall behaviour of 
these quantities indicates important increases in the r.m.s. value of the wall pressure 
fluctuations and its derivatives, the r.m.s. streamwise vorticity and in the average 
energy dissipation rate and the Reynolds shear stress. If the normalization is based on 
the wall shear stress and the kinematic viscosity, these changes are shown to be 
consistent with an increase in strength - but not the average diameter or average 
location - of the quasi-streamwise vortices in the buffer region. Evidence of this 
strengthening is provided by the increased sum of the stretching terms for the mean- 
square streamwise vorticity. It is also shown that a normalization based on 
Kolmogorov velocity and lengthscales, defined at the wall, is more appropriate in the 
near-wall region than scaling on the wall shear stress and kinematic viscosity. 

1. Introduction 
Direct numerical simulations (DNS) of turbulent flows have had a major impact on 

near-wall modelling (Mansour, Kim & Moin 1988, 1989; Mansour 1991; Rodi & 
Mansour 1993) since they have provided estimates from terms in transport equations 
of the quantities - - _  that are usually modelled (e.g. the turbulent kinetic energy 
k = +? = f(u2 +v2+ w2), and its corresponding dissipation rate e; u, v, w denote the 
velocity fluctuations in the streamwise (x), wall-normal ( y )  and spanwise ( z )  directions, 
respectively; note that the quantities ul, u2, u3, xl, x2,  x3 may be used interchangeably 
with u, v, w, x, y ,  2) .  Many of these terms, especially those involving spatial derivatives, 
have yet to be measured reliably in the wall region. The success of the use of DNS 
databases in connection with near-wall modelling can be gauged from the improved 
calculation of E in the near-wall region (e.g. So, Zhang & Speziale 1991 b). 

One limitation of the current DNS databases relates to the low Reynolds numbers 
at which they have been obtained so that extrapolation of the results to high Reynolds 
numbers requires caution. The DNS databases for both the boundary layer (Spalart 
1988) and the channel flow (Kim, Moin & Moser 1987; Kim 1989) have been obtained 
at sufficiently different values of the Reynolds number to allow some insight into low- 
Reynolds-number effects, especially in the near-wall region. This is important since 
these databases are being used to model terms in transport equations for k, e and the 
Reynolds stresses down to the wall. 

In Antonia et al. (1992), the channel flow DNS data were examined in conjunction 
with data obtained from experiments in the same flow. Both data sets indicated 

3 F L M  276 



62 R. A .  Antonia and J.  Kim 

significant low-Reynolds-number effects, comparable to those reported for the 
boundary layer by Spalart (1988). In particular, the data in the inner region of the flow 
indicated that scaling on wall variables is not appropriate, various wall-normalized 
quantities exhibiting different Reynolds number dependences. Several possible causes 
for these dependences were investigated. While no evidence was found for any direct 
interaction between inner regions on opposite channel walls, it was suggested that 
observed effects of h+ (= hU,/v, h is the channel half-width, U, is the friction velocity 
and v the kinematic viscosity of the fluid; the superscript + denotes normalization __ by 
U, and v) on u'+ (the prime denotes an r.m.s. value) and the Reynolds shear stress u+u+ 
were likely to be associated with the increased stretching of quasi-streamwise vortices 
in the wall region. In the present paper, we focus on the near-wall behaviour of several 
turbulence quantities (using the DNS channel flow database) primarily to relate more 
directly the low-Reynolds-number effects to the near-wall vortical structure. For this 
purpose, we consider statistics for the velocity and pressure fluctuations and examine 
the constituent terms in the transport equations for the Reynolds stresses and the 
mean-square vorticities. Of particular interest are the stretching terms in the vorticity 
budgets in that they provide a means of quantifying the vortex stretching, with the 
caveat that the equivalence between vorticity and vortices may be tenuous. 

After recalling in 5 3 the asymptotic near-wall form of various turbulence quantities, 
we quantify in $4 the Reynolds-number dependence of the wall values of these 
quantities. The Reynolds-number dependence of the transport equations for the 
Reynolds stresses and the mean square vorticity is considered in $ 5  and an attempt is 
made in $6 to relate this dependence, in particular that of the stretching terms in the 
vorticity budget, to that inferred from a simple near-wall model of quasi-streamwise 
vortices. Evidence in support of the appropriateness of a Kolmogorov-based scaling 
for the near-wall region is presented in $7. 

2. DNS details 
The database used here was obtained from direct numerical simulations (DNS) of 

a fully developed channel flow at two values of h+ (180, 400). Details of the 
computations can be found in Kim et al. (1987). Uniform meshes were used in the 
homogeneous x (= xl) and z (= x3) directions. For h: 1: 180, Ax+ N 11 and Az+ 1: 4 
while for h+ = 400, Ax+ N 7 and Az+ N 4. A non-uniform mesh was used in the wall- 
normal y (= xz) direction with the minimum spacing of about 0.05 (for both h+) at the 
wall and a maximum spacing (Ay+ N 4.4 for h+ = 180 and 5.5 for h+ = 400) at the 
channel centreline. In the region y+ 5 10, the Kolmogorov lengthscale v+ is about 1.5 
for both h+ (see Antonia, Kim & Browne 1991); Ay' = 1.5 at y+ x 10 for both h+, and 
the computational resolution appears to be therefore quite adequate for this flow 
region. 

3. Asymptotic near-wall behaviour of various turbulence quantities 
Taylor series expansions of velocity and pressure fluctuations about their wall values 

have been written by a number of authors (e.g. Townsend 1956; Monin & Yaglom 
1975; Hanjalic & Launder 1976; Chapman & Kuhn 1986; Mansour et at. 1988). The 
expansions near y+ = 0 for u+, u+, w+ and p +  are re-written below (up to order Y + ~ )  
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W+ = b, y+ + C, y+' + d, y f 3 ,  (3) 

pt = a,+b,y++~,y+~+d,y+~, (4) 

where the coefficients are functions of x+, z+ and t+. The continuity equation and the 
momentum equations allow a few relations between these coefficients to be written (e.g. 
Mansour et al. 1988) 

( 5 )  

ap,l = 2c1, ( 6 )  

2c2 = - (bl, 1 + ' 3 , 3 ) ,  

a,,, = 2c3, 

b, = 2c2, 

where bl,l ZE abl/i3x+, b,,, = ab,/az+, etc. Note that relations (6) and (7) reflect the 
equalities which exist at the wall between the instantaneous pressure gradients (in 
either xf or z+) and the y+-derivatives of either w l  or OJ;, namely 

aP - a", aP - a", 
ax ay ' az ay . 

-- _ _  

Expressions for several turbulence quantities can be derived from (1)-(4). For 
example, the components of the vorticity fluctuation vector are given by (to order y2) 

OJ; wT2 -ZIT, = b, + 2c3y+ + (3d3 - c2,,)y+', 
"+ y = - U+ ,3-w:1 = (b1,3-b3,1)Y+,  

"+= - V ,  + - u:. = - b, - 2c, y+ + (c2, - 3d1) y+'. 

U+V+ = b, c2 Y + ~ .  

(9) 
(10) 
(1 1) 

There is no y+' term in (10) since (C~ , , -C , ,~ )  is zero as a result of conditions (6) and 
(7). The product U+V+ is given by (to order y3) 

(12) 

4. Effect of Reynolds numbers on velocity, pressure and vorticity statistics 
Distributions of r.m.s. values of the three velocity fluctuations and of the Reynolds 

shear stress are shown in figure 1, together with the distributions of q", where q' = ?"*. 
Root mean square vorticity fluctuations are shown in figure 2 while the r.m.s. values 
ofp and its spatial derivatives are given in figures 3 and 4. Although all the data in one 
half of the channel are plotted in these figures, the logarithmic scale for y+ highlights 
the near-wall behaviour of the plotted quantities. The shapes of the curves at small 
values of y+ suggest a limiting wall behaviour which is consistent with the dominance 
of the first terms on the right-hand sides of (1) to (4) and (9) to (12). In every case, the 
curves exhibit a clear tendency towards constancy as y+ + 0. 

The r.m.s. values of the coefficients of the first terms in ( 1 )  to (4) and (9) to (1 1 )  are 
shown in table 1 (the subscript w will be used to denote wall values). Also shown are 
the average values of the coefficient in (12) as well as those of the coefficients of the 
first terms in the expansions for q' and c. Not all the estimates shown in the table are 
independent. For example, (u'+/y+), and w& should be identical as should those of 
( W ' + / Y + ) ~  and uzw. The differences reflect the numerical uncertainties of these estimates. 
There are two sources of errors, numerical (truncation errors) and statistical (limited 
sample size). The former are always difficult to estimate since the maximum available 
grid resolution is usually used for final computations. The adequacy of the resolution 
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Y+ 

is determined by comparing the computed statistics with those obtained with a coarser 
grid and by examining the computed spectra. Errors associated with the limited sample 
size can be estimated by examining computed statistics obtained from different 
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Percentage 
Quantity h+ = 180 h+ = 400 increase 

(QY+), 0.356 0.395 11 
(u' l Y +  )w 8.5 x 10-3 1.1 x 10-2 29 
(w: / Y + L  0.190 0.245 29 
(q' MW 0.406 0.468 15 
( - u + u + / Y + ~ ) ,  7.0 x 10-4 9.5 x 10-4 36 
€+ 0.164 0.219 34 

1.455 2.061 42 Y+ 
P w  

@ P + P X + ) l ,  4.8 x 6.4 x 33 
@P+FY+)l, 1.7 x 2.3 x lo-* 35 
@P+FJZ+)l ,  6.9 x 9.1 x 32 

0.186 0.245 32 W Z W  

wz, 0.356 0.396 11 

I +  

( ( p Y  +) w 2.7 x 2.9 x 7 

TABLE 1. Effect of Reynolds number on the r.m.s. values of various turbulence statistics 
at the wall 
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FIGURE 5 (a, b). For caption see facing page. 

numbers of computational fields; for any of the quantities shown in table 1, the limited 
sample size error is comfortably smaller than the percentage increases (also given in the 
table) between the two Reynolds numbers. The estimated uncertainty due to the 
sample size in wrw and w,,, for example, is about 2%. 

The increase in (u'+/y+), (= bi) with h+ is smaller than that in either (v'+/y''), 
(= ci) or (w'+/y+), (= bk). The increase in ( q ' + / ~ + ) ~  (= b: + bf") ,  which is dominated 
by the contribution from u+', is comparable to that in ( ~ ' ~ / y + ) ~ ~  The increase in 
(-U~U~/Y+~), is slightly larger than that for either ( ~ ' ~ / y + ~ ) ,  or (w' /y+),. 

Other quantities which show important Reynolds number variations include wj-' 
(figure 2), p'+ (figure 3) and all three r.m.s. pressure derivatives (figure 4). In general, 
the three r.m.s. pressure derivatives are roughly of the same order of magnitude and 
their percentage increases with h+ is approximately the same as that for u;. Kim (1989) 
showed that the dominant source term in the Poisson equation for pressure was related 
to streamwise vortices in the buffer layer (this is discussed in $6). It is therefore 
reasonable that the r.m.s. pressure and pressure derivatives are increased by roughly 
the same order of magnitude as the streamwise vorticity in the buffer layer. 

The percentage increase in c' (figure 5d)  is comparable to that for -UfUf/y+3 (figure 
1) and is virtually identical to that of w'+ (figure 2). The latter result is not surprising in 

If 
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FIGURE 5 .  Budgets of the Reynolds normal stressesand o f the i rw  (i.eLhe turbulent energy). (The 
numbers refer to the terms in equation (13)) (a) u+'; (b) of'; (c) w+'; (d )  qC2. h+: ---, 180; -, 400. 

view of the near equality between E+ and uf2 in the present flow (cf. Antonia et al. 1991 
for details). Note that, in the buffer region, uc is the only vorticity component to be 
significantly affected by h+. Note also that (ap+/ay+)' is approximately twice as large as 
d+/y+', in reasonable agreement with the Neumann boundary condition at the wall, 
i.e. equation (8). It should further be noted that the Reynolds-number variations 
exhibited by table 1 are not unique to this flow; similar variations may be observed in 
Spalart's (1988) boundary-layer data (e.g. pr+ increases by about 42 % between 
R, = 300 and R, = 1410, where R, is based on the free-stream velocity and momentum 
thickness of the layer). 

( ~ : / y + ) ~  is practically unchanged, reflecting the apparent insensitivity of w; on the 
Reynolds number. (The ratio u;/y+ is plotted in figure 2 instead of wk which goes to 
zero as y++O, cf. equation (lo).) It is also of interest to note that several quantities, 
which may be expressed as ratios of those shown in table 1 ,  are essentially unaffected 
by the increase in h+. For example, the limiting wall value of the structure parameter 
(-ufv+/y+q+') is about 43 x lop4. The limiting wall value of the turbulent timescale 
(?/y+*~+) is equal to 1. It follows that (-u"i30+/ay+)/(y+3~+), which is the limiting 
wall value of the ratio of turbulent energy production to turbulent energy dissipation 
rate, is also unchanged. 

- 
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5. Budgets of mean-square velocity and vorticity fluctuations 
It is of interest to examine how the Reynolds-number dependence of the mean- 

square values of the velocity and vorticity fluctuations is apportioned among the 
various terms in the transport equations for ~ these quantities. 

The equations for the Reynolds stresses u: u; are given by 

1 2 3 4 5 
(13) 

where terms 1,2,3 represent the production, turbulent diffusion or turbulent transport, 
and velocity-pressure gradient correlation terms, respectively, while terms 4 and 5 are 
the viscous diffusion and turbulent dissipation rate terms, respectively. The 
distributionsf t k a b m e  terms are shown in figures 5(a)  (& 5(b)  (u+"), 5(c) (3); 
5 ( d )  (q+' = u+'+ u+' + w+') and figure 6 (u") ; the numbers in the figures correspond 
to the term numbers in (13). Although the distributions at h+ = 180 have already been 
presented and discussed in Mansour et a f .  (1988), the emphasis here is on the Reynolds- 
number dependensof the various terms which make up the Reynolds stress budgets. 

In the case of u+', the major effect of h+ outside the sublayer is confined to the 
production and velocity-pressure gradient terms. Outside the sudayer, the  velocity- 
pressure gradient term is the dominant production term in the u+' and w+' budgets. 
It is significantly affected by the Reynolds number, possibly reflecting the effect of 
h+ on the r.m.s. pressure derivatives (figure 4). The increase in the velocity-pressure 
gradient terms is matched by an increase in the dissipation rate (and a somewhat 
smaller increasein thLturbulent diffusionAerm). The difference between the h+ 
dependence of u+' and wf2 relative to thatof u+' in theregion y +  2 10 seems consistent 
with the larger effect of h+ on a+' (and w+') than on u+' for this flow region (Antonia 
et af. 1992). The budget of y+' (figure 5 d )  is essentially identical to that of Uf2, reflecting 
the major contribution of u+' to the total energy (note that exaggerated scales are used 
in figures 5(b) and S(c), relative to those in figures 5(a)  or 5(d)) .  Figures 5(a) and 5(d )  
stressthe relatively minor role played by the velocity-pressure gradient correlation in 
the u+' and q+' budgets. 

The budget of the Reynolds shear stress (figure 6) contrasts significantly - with that of 
the normal stresses. Although the major source term is, as in the case of - u + ~ ,  provided 
by the production term (note that negative values represent a gain for the u+u+ budget), 
this term is now balanced by the velocity-pressure gradient and the turbulent diffusion 
terms. Outside the sublayer, the viscous diffusion and the dissipation rate terms are 
negligible (Mansour ~ et af. 1988, noted that the viscosity plays a minor role in the 
dynamics of u+u+ because the sum of the __ two viscous terms is small throughout the 
channel), a trend which is also seen in the u+u+ budget presented by Spalart (1988) for 
the boundary layer. The effect of the Reynolds number is significant both on the major 
source and sink terms. 

Transport equations for w:oT have been written by several authors (e.g. Corrsin 
1953; Tennekes & Lumley 1972). In the present form, the advection term is zero and 
the equations are given by 

-- __- ~- - u : w ; q i  -f(uj + + +  wi w& +co,,tw;u;j +w;o ;  U l j  +w;u;jQ2i' +;(w:w:) .. --of of 
,u, I % , 3  2.4 

Y V V V V V V 

1 2 3 4 5 6 7 
= 0. (14) 

Tennekes & Lumley (1972) have interpreted 1 and 2 as the gradient production and 
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transport by the velocity fluctuations, respectively. Terms 3, 4, 5 are stretching (or 
compression) terms, the first of these representing turbulent stretching of the vorticity 
fluctuations, when i = J ;  they represent the reorientation of vortex lines when i + j .  
Terms 6 and 7 are the viscous diffusion and dissipation terms, analogous to terms 4 and 
5 in (13). A measure of the numerical uncertainty in computing the b w t s  was 
inferred from the imbalance in the budget. For example, in the case of the w,' and w+' 
budgets, the imbalance is less than 1 YO of the wall value of the dissipation (term 7 )  
throughout the channel. - 

Term 1 contributes only to the 0;' budget (figure 7c). While term 3 is the most 
important source term in the outer part of the channel, its contribution in the inner 
region is somewhat overshadowed by that of the other two stretching terms in the case 
o f z  (figure 7 a)  a n d 3  (figure 7b)  (terms 4 and 5). In the buffer region (figure 8), term 4, 
or stretching of vorticity fluctuations by the mean velocity gradient is the dominant 
source term while term 5 ,  which Tennekes & Lumley (1972) describe as a mixed 
production term, represents a significant sink term. Close to the wall, terms 6 and 7 
balance each other (as in the case of terms 4 and 5 in figure 5 )  and are appreciably __ 

affected by the - Reynolds - - -  number. Except for the absence of term 4 in - the w:' budget, 
the budget of w+' (= w%w$'+&) (figure 7 d )  resembles that of w:' (figure 7c)  
more than that of either w,' or w+ Y -  (the scale in figure 7(b)  is exaggerated). 

As noted in 94, the equality e+ = w+' is closely satisfied in the present flow. There is 
also a strong similarity between the present w+' budgets and the budgets of e+, obtained 
in the same flow by Mansour et al. (1988) [h+ = 1801 and Rodi & Mansour (1993) 
[A+ = 4001. In particular, the relative shapes and magnitudes of the turbulent 
production ( 2 4  u: , uz, ,) and dissipation (22.4: km u: km) terms in the c+ budget are 
virtually identical to those for terms 3 and 7 in figure 7(d ) .  The increase, with respect 
to h+, of the peak dissipation value (at y+ N 5 )  is about 30% in each case. Similarly, 
the increases in the 1 0 ~ 1  peak values for the turbulent production (c+ budget) and 
turbulent stretching (w+' budget) terms are identical: 48% at y+ N 3 an126% at 
y+ N 11. It would appear that the Reynolds number dependence of the w+' budget 
mirrors almost perfectly that of the e+ budget. 

When only the sum of the stretching terms and thcsum of the viscous terms are 
considered (they are not plotted here) the budget of w+' simply reduces to a balance 
between production (stretching) and the sum of viscous diffusion and dissipation 
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terms, the turbulent transport being virtuallyaegligible. In this sense, the budget of 7 
differs in a significant manner from that of q+’ where the magnitude of the turbulent 
transport is comparable to the production and dissipation terms. 

6. Reynolds-number dependence through increased vortex stretching 
The Reynolds-number dependence of the various quantities considered in 994 and 5 

(see also Antonia et al. 1992) can be explained, at least qualitatively, in terms of 
increased stretching (when normalized by wall variables) of the vortices in the wall 
region, or, perhaps equivalently, in terms of an active motion which intensifies as h+ 
increases. This equivalence seems plausible if the vortical structures in the inner region 
of the flow play a dominant role in transferring momentum and heat in this flow 
domain. The active - motion (Townsend 1961 ; Bradshaw 1967) should be the major 
contributor to u+v+ in this region. The inactive motion can make important 
contributions to the Reynolds normal stresses but is unlikely to contribute to the 
Reynolds shear stress in the inner region. 

In the buffer region, Robinson (1991a) showed that there is a close association 
between quasi-streamwise vortices (which occur singly with much higher probability 
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than counter-rotating pairs) and both outward ejections of low-speed fluid and 
wallward - sweeps of high-speed fluid. Since these events dominate the contribution to 
u+u+, the above association implies a close link between the active motion and the 
quasi-streamwise vortices. Relatively direct evidence that the quasi-streamwise vortices 
in the buffer region are increasingly stretched as h+ increases is provided by the 
stretching terms in figure 7. The terms representing stretching by the turbulent 
fluctuations (term 3) are replotted using a bigger scale in figure 8 (a). The sum of all the 
stretching terms (3,4 and 5 )  is shown in figure 8 (b). Figure 8 (a) confirms the significant 
increase ( N 37 %) with h+ in the turbulent stretching of the w,' fluctuations at y+ N 25 
(near the most probable location of the streamwise vortex centres). At this location, 
there is a negligible increase in the turbulent stretching of w;. For w:, the turbulent 
stretching terms exhibits local peaks at y+ N 3 and y+ N 11, the peak at y+ N 3 having 
the slightly larger magnitude. The percentage increases with h+ are about 51% at 
y+ N 3 and 25 % at y+ = 11. It should be noted, however, that the peak values of terms 
4 and 5 are larger (for each vorticity component) than the peak value of term 3. Term 
4 has the largest peak in the case of 0,' and 0; while term 5 is largest for 0:. It seems 
therefore appropriate to turn our attention to the effect of h+ on the sum of the three 
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stretching terms (figure 8 b). The major increase ( N 41 YO) occurs in m i ,  the increases 
in w i  and w: being equal to about 16 YO and 31 YO, respectively. The locations at which 
these increases occur ( y+ 1: 1 1 for 0,' and oY+, y+ N 3 for w:) correspond approximately 
to those for the peak values of the largest stretching terms. It seems reasonable to 
attribute the increases in the sum of the stretching terms for w i  and w$ mainly to an 
increased stretching of the quasi-streamwise vortices in the buffer region. Conjecturally, 
the increase in the sum of the stretching terms for w r  may be attributed to the 
strengthening of the splatting motion induced by the quasi-streamwise vortices. This 
motion (e.g. Moin & Kim 1982; Chapman & Kuhn 1986) can be described as wallward 
moving fluid which, on encountering the wall, is deflected in both positive and negative 
z-directions. This results in 8w/az being large and positive. One would expect this 
motion to result in fairly large and positive (i.e. negative 0,; the boundary-layer 
measurements of Bah t ,  Wallace & Vukoslavcevic (199 1) indicate that intense spanwise 
vorticity stretching dominates over spanwise vorticity compression in the near-wall 
region) at the wall. Consequently, the correlations w,"(aw/az) (the main contributor to 
term 3) and w,(aw/az) SZ, (term 5 )  should be positive and large close to the wall (it seems 
plausible that this occurs near the edge of the sublayer, as indicated by figure 8). 

The increased stretching of the quasi-streamwise vortices would be consistent with 
the major increase in the Reynolds shear stress and the smaller increases in the 
Reynolds normal stresses (which received contributions from the inactive motion). It 
should also be consistent with the significant increase in the r.m.s. pressure and 
pressure derivative values (figures 3 and 4) as discussed in 94. Strong vortices in 
unsteady viscous flow are also expected to have low-pressure cores, accounting for the 
strong correspondence between low-pressure regions and quasi-streamwise vortices 
(Robinson 1991 b). The joint probability density functions betweenp+ and w,' presented 
by Kim (1989) at y+ = 30 and 100 in a fully developed turbulent channel flow indicated 
that large w,' fluctuations are likely to be associated with large negative p+ fluctuations 
although the reverse is not necessarily true. 

Kim et al. (1987) explained their distribution of wj-' (at h+ = 180) in terms of a 
(simplified) flow module comprising single streamwise Oseen-like vortices (see figure 9). 
The average position y l  of the vortex centre, where w c  exhibits a local maximum w;, 
was assumed to be equal to 20 while the average vortex diameter Itt was taken to be 
equal to 15 (wj-' has a local minimum at y t  N 5 ,  where the magnitude of w has a local 
maximum). With such a model, it can be shown that (Kim et al. 1987) 

where w c  is the value of w c  at yf = 0. Although the data in figure 2 indicate that the 
peak in w, is fairly broad (and not accurately defined), the selected values of yt; and 
yt; seem reasonable. The data in figure 2 indicate values of 0.74 (h+ = 180) and 0.71 
(h+ = 400) for the left-hand side of (15); the ratios of the left-hand and right-hand sides 
of (15) are 1.11 (h+ = 180) and 1.06 (h+ = 400). Spalart's (1988) boundary-layer 
distributions of w;' provide reasonable support for the choices of y l  (1: 15) and yt; 
( 1 ~  4); the ratio w(z: /wL (0.72, 0.67 and 0.64 for R,  = 300, 670 and 1410, respectively; 
the corresponding values of 6+, where 6 is the boundary-layer thickness, are 161, 315 
and 651) is also in reasonable agreement with (15). 

It is relevant to comment on the near-wall behaviour of aw/ay (see figure 9) which 
is caused by the presence of the quasi-streamwise vortices. For the clockwise vortex 
shown in figure 9, the negative aw/ay at the wall should be associated with negative 
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values of av/az and hence positive values for the product (av/az) @w/2y). Similarly, 
counterclockwise vortices would induce positive values of (aw/ay), (av/az) and their 
product. The correlation (av/az) (aw/ay) should therefore be positive close to the wall; 
figure 10 shows that there is a positive maximum near y+ = 3. The magnitude of this 
peak is, however, small compared with that of the negative maximum at y+ N 30 (i.e. 
near the average location of the vortex centre). As noted earlier, the product 
(av/az)(aw/ay) is the major nonlinear source term in Poisson's equation for the 
pressure fluctuation (Kim 1989). It seems therefore reasonable to expect the peak value 
ofp' to occur near y+ = 30. For the present data, pkax occurs at y+ N 32 (figure 3) for 
the two values of h+. For Spalart's data, pkax occurs at y+ N 24, independently of a+. 

The above considerations suggest that the dependence of O J ~  on h+ may be explained 
in terms of an increase in strength of the vortex, without any significant change to its 
size. Figure 11 shows that the correlation coefficient 

PW,,,  = OJx(Y) OJAY + AY)/w;(Y) 4 ( Y  + AY) 
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at y+ = 15 is virtually unaffected by h+. The rather large negative value of the 
coefficient near the wall (at Ay+ = - 15) reflects the presence of vorticity of opposite 
sign to that of the overlying vortex which results from the no-slip condition at the wall 
(figure 9). The correlation coefficient pwrwy at y+ = 15 (figure 11) is unaffected by h+. 
This, and the 0;’ distributions in figure 2, suggests that both the scale and the strength 
of wy are unaffected by h+. For completeness, p,,,, is also included in figure 11. As in 
the case of w, and wy, the lengthscale of w, is the same at the two values of h+. While 
the lengthscales associated with w, and w, are roughly comparable, the scale associated 
with wy is appreciably larger. This appears to be consistent with the continuity 
requirement (namely the solenoidality of vorticity) and the expectation (at least for 
homogeneous turbulence) that ‘longitudinal’ scales should be larger than ‘lateral’ 
scales. The distance between the local minima of p,,,, may be loosely identified with 
an average vortex diameter. A value of Ctt is consistent with that previously assumed 
with the model of figure 10. Further support for this magnitude is provided by two- 
point u-correlations in the z-direction. The distribution of pvv(Az+), calculated at 
y+ = 15 (figure 12) exhibits a clear minimum at Az’ N 30 at both h+, confirming that 
the average streamwise vortex diameter scales on U, and v. 

Robinson (1990, 1991 b) computed several statistics for the locations, size and 
strength of streamwise and spanwise vortices using the DNS boundary-layer database 
of Spalart (1988). His results point to a clustering of quasi-streamwise vortices near the 
wall. The most probable values for the location and diameter of these vortices are very 
similar to the present suggestions. Robinson also computed the circulation r (by 
integrating w, over the vortex area) for quasi-streamwise vortices which were identified 
visually from instantaneous sectional streamlines in the ( y ,  2)-plane and obtained a 
peak value for P of about 63. P can be estimated from the relation Ty = wic($ui+*). 
For the present data, P is about 104 at h+ = 180 and about 114 at h+ = 400. For 
Spalart’s data, P increases from 68 (6+ = 160) to 74 (6+ = 650). The relatively small 
increase in I-+ for Spalart’s data reflects the small increase (with 6+) of w c  or wcw (see 
figure 13). Jimenez (1993) estimated a value of P of about 150 (for the present 
database at h+ = 180) for the most intense vortices (8 was about 15). As noted by 
Robinson and Jimenez, there is unavoidable arbitrariness in identifying vortices and 
this would partly account for the spread in the above values of P. Because of the 
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difficulty in unambiguously detecting vortices, we did not attempt to compute statistics 
of vortices from the channel flow databases, restricting ourselves to conventional 
vorticity statistics. Although the relationship between vorticity and vortices is not 
clearcut, there seems little doubt, however, that P increases with h+ or 6+ at least in 
the Reynolds number range for which the DNS data have been obtained. 

It is appropriate here to comment, albeit in a speculative manner, on whether the 
Reynolds number variation observed for the present data will continue as h+ or 6+ are 
further increased. Figure 13 shows the values of wj-', w& and ph) for the present data 
and Spalart's boundary-layer data. The use of walr values emphasizes the Reynolds- 
number dependence since the rate of increase for the quantities examined is, in general, 
largest at the wall. The trend of the boundary-layer data in figure 13 tends to suggest 
that the rate of increase weakens as S+ increases and that the three quantities will 
asymptote to constant values when a+. It is reasonable to expect that a similar trend 
would apply for the channel data. For sufficiently large values of S+ and h+ (probably 
of order lOOO), available measurements in the logarithmic and outer regions of both 
flows are consistent with the concept of Reynolds-number similarity. Assuming that 
there is non-negligible interaction between the inner and outer regions of these flows, 
the near-wall Reynolds number dependence should eventually disappear when 6+ and 
h+ are sufficiently large, i.e. scaling on wall variables should ultimately apply in the 
near-wall region. A more appropriate scaling for the near-wall region when h+ is small 
is considered in the following section. 

,+ 

7. Scaling on wall-Kolmogorov variables 
Normalization on standard wall variables (U,  and v) was used in previous sections. 

The data clearly indicate that this scaling- which is commonly adopted in the 
literature - is inappropriate in the near-wall region, at least in the context of the low 
Reynolds numbers at which the DNS databases were obtained. (Note that one need to 
discount the collapse of U' in the sublayer since U, is derived from the value of d U/dy 
at the wall; correspondingly, the usual definition of the sublayer, i.e. y+ 5 5 may be 
inappropriate in the context of turbulence quantities.) Tennekes & Lumley (1972, 
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p. 159) noted that, near the wall, 1' N ICY+ and 1: (~y+) l / '  (1  is an integral scale of the 
turbulence, 7 is the Kolmogorov microscale and K is the von Karman constant) and 
argued that turbulence cannot sustain itself when I becomes smaller than 3. This 
suggests that e,, the turbulent energy dissipation rate at the wall, may be a likely 
candidate for the normalization of turbulence quantities near the wall. Accordingly, 
wall-defined Kolmogorov length and velocity scales 

7 w  = ( f )v ' ,  
u,, = ( V E w ) 1 / 4 ,  

were selected as the normalizing scales (the values of c,  are shown in table 1). An 
asterisk denotes normalization by 7, and UKw. Root mean square turbulence intensities 
and the Reynolds shear stress are plotted in figure 14 using both Kolmogorov scales 
and standard (U,  and v) scales. The Kolmogorov normalization is clearly superior over 
a region extending from the wall to the location - of the peak Reynolds stress. The 
collapse is nearly perfect in the case of d* and u*o*. One would expect the near-wall 
region to be disturbed by motions which arise in the outer region, e.g. the inactive 
motion. This is reflected in the presentation of figure 15 which may be directly 
compared with figure 1. The changes in the wall values of u'*/y*, w'*/y* are equal to 
about -4  Yo and 12 YO which are significantly smaller than the percentage increases 
inferred from figure 1 (cf. table 1). For the wall values of d*/y*' and u*u*/Y*~, the 
increases are about 7 %  and -4%, which are negligible compared with those in table 
1 .  Note that the near-wall distributions of q'*/y* are coincident, the wall value of 
q'*/y* being, by virtue of the normalization, equal to 1. Global quantities, like the 
pressure fluctuation, are unlikely to collapse - near the wall - when normalized by 
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Kolmogorov variables. Indeed this is what we observe (the figure is not shown); the 
increase in the wall value of p‘* is however only 13 %, compared with 42 % (table 1) 
in the case of p” .  

We have also verified that, for the near-wall region, the Kolmogorov-normalized 
stretching terms collapse better than indicated in figure 8. The percentage changes for 
w? and wi* (figure 16) are smaller than those inferred from figure 2 (cf table 1). 
However, the change in wiT/y* is - 15% compared with + 7 %  for w c / y + .  It would 
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appear that U, and v are more appropriate scales for w;. The wy correlations in figures 
1 1  and 12 and the commonly reported average wall streak spacing of about lOOv/U, 
for a wide range of Reynolds numbers would seem to support this claim. 

As discussed in the previous section, one would expect EL to asymptote to a constant 
value for sufficiently large h+. When this occurs, normalization by Kolmogorov scales 
becomes equivalent to the standard normalization since U, - U,, (this follows from 
U, v w / v  = EL +constant, since U,, r,/v is, by definition, equal to 1). 

-114 

8. Conclusions and discussion 
The present results, obtained from direct numerical simulations of a fully developed 

turbulent channel flow at two values of the Reynolds number, emphasize the significant 
low-Reynolds-number effects that exist in the near-wall region. In particular, important 
increases (with Reynolds number) occur for the r.m.s. streamwise vorticity and 
pressure fluctuations as well as the Reynolds shear stress and average turbulent energy 
dissipation rate. These increases are consistent with the strengthening of both quasi- 
streamwise and spanwise vortices in the wall region. In view of the relatively close 
association of these vortices with the events that make dominant contributions to the 
Reynolds shear stress, the intensification of these vortices is equivalent to a 
strengthening of the active motion. The vortex statistics obtained by Robinson (1990, 
1991 b) and the present data indicate that the quasi-streamwise vortices are likely to be 
more important in the near-wall region than the spanwise vortices, the influence 
exerted by the latter tending to increase further away from the wall. The simple model 
in figure 9 is consistent with quasi-streamwise vortices which become more intense but 
whose average location yz  and diameter dt remain approximately unchanged as the 
Reynolds number increases. Support for a constant value of dt is provided by two- 
point w, correlations in the y-direction and two-point 0 correlations in the z-direction. 

Some insight into the strengthening of the quasi-streamwise vortices was provided 
by the budgets of the mean-square vorticity fluctuations. These budgets indicate that, 
although the stretching of vorticity fluctuations by the turbulent velocity fluctuations 
is most important in the outer region (where it is approximately balanced by the 
dissipation rate), its influence in the wall region may be overshadowed by that of the 
other two stretching terms, which bring into play either the mean velocity gradient 
aO/ay or the mean spanwise vorticity a,. When the sum of the three stretching - terms 
is considered, the largest increase with respect to h+ occurs, in the case of wz2,  at 
y+ N y i ,  where y t  is the average location of thevortex centre. There is a significant 
increase in the sum of the stretching terms in the w:' budget but, arguably, this increase 
is associated with the more vigorous splatting motion induced by the quasi-streamwise 
vortices. 

In the near-wall region, most of the turbulence quantities scale better, though not 
perfectly, on Kolmogorov velocity scales and lengthscales (based on E ,  and v) than on 
the standard variables (U, and v). This is not unexpected given that, in this region, the 
mean flow field is dominated by the viscous stress while turbulence cannot sustain itself 
when the lengthscales become smaller than the Kolmogorov lengthscale. At sufficiently 
large h+, perhaps of the order of 1000, normalization by U, and v should become 
equivalent to normalization by Kolmogorov wall scales. 
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